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Learning Binary Relations and Total Orders

Sally A. Goldman Ronald L. Rivest Robert E. Schapire
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May 4, 1990

Abstract

We study the problem of learning a binary relation between two sets of objects
or between a set and itself. We represent a binary relation between a set of size n
and a set of size m as an n x m matrix of bits, whose (i,j) entry is 1 if and only
if the relation holds between the corresponding elements of the two sets. We present
polynomial prediction algorithms for learning binary relations in an extended on-line
learning model, where the examples are drawn by the learner, by a helpful teacher, by
an adversary, or according to a uniform probability distribution on the instance space.

In the first part of this paper, we present results for the case that the matrix of the
relation has at most k row types. We present upper and lower bounds on the number
of prediction mistakes any prediction algorithm makes when learning such a matrix
under the extended on-line learning model. Furthermore, we describe a technique
that simplifies the proof of expected mistake bounds against a randomly chosen query
sequence.

In the second part of this paper, we consider learning a binary relation that is
a total order on a set. We describe a ,- kral technique using a fully polynomial
randomized approximation scheme (fpras, fc "nplement a randomized version of the
halving algorithm. We apply this techniquL ) the problem of learning a total order,
using a fpras for counting the number of extensions of a partial order, to obtain a
polynomial prediction algorithm that with high probability makes at most n Ig n +
(ig e) lg n mistakes when an adversary selects the query sequence. We also consider the
case that a teacher or the learner selects the query sequence. Finally, we discuss how
the halving algorithm may be used to construct an efficient counting algorithm.
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1 Introduction

In many domains, it is important to acquire information about a relation between two sets.

For example, one may wish to learn a "has-part" relation between a set of animals and a set

of attributes. We are motivated by the problem of designing a prediction algorithm to learn

such a binary relation where the learner has limited prior information about the predicate

forming the relation. While one could model such problems as concept learning, they are

fundamentally different problems. In concept learning there is a single set of objects and the

learner's task is to classify these objects, whereas in learning a binary relation there are two

sets of objects and the learner's task is to learn the predicate relating the two sets. Observe

that the problem of learning a binary relation can be viewed as a concept learning problem

by letting the instances be all ordered pairs of objects from the two sets. However, the ways

in which the problem may be structured are quite different when the true task is to learn

a binary relation as opposed to a classification rule. That is, instead of a rule that defines

which objects belong to the target concept, the predicate defines a relationship between pairs

of object.

A binary relation is defined between two sets of objects. Throughout this paper, we

assume that one set has cardinality n and the other has cardinality m. We also assume that

for all possible pairings of objects, the predicate relating the two sets of variables is either true

(1) or false (0). Before defining a prediction algorithm, we first discuss our representation

of a binary relation. Throughout this paper, we represent the relation as an n x m binary

matrix, where an entry contains the value of the predicate for the corresponding elements.

Since the predicate is binary-valued, all entries in this matrix are either 0 (false) or 1 (true).

The two dimensional structure arises from the fact that we are learning a binary relation.

For the sake of comparison, we now briefly mention other possible representations. One

could represent the relation as a table with two columns, where each entry in the first column

is an item from the first set and each entry in the second column is an item from the second

set. The rows of the table consist of the subset of the potential nm pairings for which the

predicate is true. One could also represent the relation as a bipartite graph with n vertices

in one vertex set and m vertices in the other set. An edge is placed between two vertices

exactly when the predicate is true for corresponding items.

Having introduced our method for representing the problem, we now informally discuss
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the basic learning scenario. The learner is repeatedly given a pair of elements, one from

each set, and asked to predict the corresponding matrix entry. After making its prediction,

the learner is told the correct value of the matrix entry. The learner wishes to minimize the

number of incorrect predictions it makes. Since we assume that the learner must eventually

make a prediction for each matrix entry, the number of incorrect predictions depends on the

size of the matrix.

Unlike problems typically studied where the natural measure of the size of the learner's

problem is the size of an instance (or example), for this problem it is the size of the matrix.

Such concept classes with polynomial-sized instance spaces are uninteresting in Valiant's [23]

probably approximately correct (PAC) model of learning. InI this model, instances are cho-

sen randomly from an arbitrary unknown probability distribution on the instance -pace. A

concept class is PAC-learnable if the learner, after seeing a number of instances that is poly-

nomial in the problem size, can output a hypothesis that is correct on all but an arbitrarily

small fraction of the instances with high probability. For concepts whose instance space has

cardinality polynomial in the problem size, by asking to see enough instances the learner can

see almost all of the probability weight of the instances space. Thus it is not hard to show

that these concept classes are trivially PAC-learnable. One goal of our research is to build a

framework for studying such problems.

To study learning algorithms for these concept classes we extend the basic mistake bound

model [10, 11, 15] to the cases that a helpful teacher or the learner selects the query sequence,

in addition to the cases where instances are chosen by an adversary or according to a prob-

ability distribution on the instance space. Previously, helpful teachers have been used to

provide counterexamples to conjectured concepts [1], or to break up the concept into smaller

sub-concepts [19]. In our framework, the teacher only selects the presentation order for the

instances.

If the learner is to have any hope of doing better than random guessing, there must be

some structure in the relation. Furthermore, since there are so many ways to structure a

binary relation, we give the learner some prior knowledge about the nature of this structure.

Not surprisingly, the learning task depends greatly on the prior knowledge provided. One

way to impose structure is to restrict one set of objects to have relatively few "types." For

example, a circus may contain many animals, but only a few different species. In the first

part of this paper we study the case where the learner has "a priori" knowledge that there are
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a limited number of object types. Namely, we restrict the matrix representing the relation

to have at most k distinct row types. (Two rows are of the same type if they agree in all

columns.) We define a k-binary-relation to be a binary relation for which the corresponding

matrix has at most k row types. This restriction is satisfied whenever there are only k types

of objects in the set of n objects being considered in the relation. The learner receives no

other knowledge about the predicate forming the relation. With this restriction, we prove

that any prediction algorithm makes at least (1 - /3)km + n[lg(Ok)J - (I - /3)k[lg(,3k)J

mistakes in the worst case for all 0 </ 3 < 1 against any query sequence. So for/3 = 1/2, we

get a lower bound of k + (n - A) Llg k - 1J on the number of mistakes made by any prediction

algorithm. If computational efficiency is not a concern, the halving algorithm [3, 151 makes

at most km + (n - k) lg k mistakes against any query sequence. (The halving algorithm

predicts according to the majority of the feasible relations (or concepts), and thus each

mistake halves the number of remaining relations.)

We present an efficient algorithm making at most km+(n - k) [lg kJ mistakes in the case

that the learner chooses the query sequence. We prove a tight mistake bound of km + (n -

k)(k-1) in the case that the helpful teacher selects the query sequence '. When the adversary

selects the query sequence, we present an efficient algorithm for k = 2 that makes at most

2m + n - 2 mistakes, and for arbitrary k we present an efficient algorithm making at most

km+n V/(k- 1)m mistakes. We prove any algorithm makes at least km+(n-k) [lg kJ mistakes

in the case that an adversary selects the query sequence, and use the existence of projective

geometries to improve this lower bound to f(km+(n-k) Llg kJ +min{nv"h, mvfi'}) for a large

class of algorithms, Finally, we describe a technique to simplify the proof of expected mistake

bounds when the query sequence is chosen at random, and use it to prove an O(km+nkV/-H)

expected mistake bound for a simple algorithm. (Here H is the maximum Hamming distance

between any two rows.)

Another possibility for known structure is the problem of learning a binary relation on

a set where the predicate induces a total order on the set. (For example the predicate

may be "<".) In the second half of this paper we study the case in which the learner

has "a priori" knowledge that the relation forms a total order. There we see that the

halving algorithm [3, 15] yields a good mistake bound against any query sequence. This

1The mistake bound is a worst case mistake bound taken over all "consistent" learners. See Section 2 for

formal definitions.



motivates a second goal of this research, to develop efficient implementations of the halving

algorithm. We uncover an interesting application of randomized approximation schemes to

computational learning theory. Namely, we describe a technique that uses a fully polynomial

randomized approximation scheme (fpras) to implement a randomized version of the halving

algorithm. We apply this technique, using a fpras due to Dyer, Frieze, and Kannan [7] and

Matthews [18] for counting the number of linear extensions of a partial order, to obtain a

polynomial prediction algorithm that makes at most n lg n + (Ig e) Ig n mistakes with very

high probability against an adversary-selected query sequence. The small probability of

making "too many" mistakes is determined by the coin flips of the learning algorithm and

not by the query sequence selected by the adversary. We contrast this result with an n - 1

mistake bound when the learner selects the query sequence [25], and an n - 1 mistake bound

when a teacher selects the query sequence.

Finally, we discuss the relationship between counting scheines and the halving algorithm.

A majority algorithm takes as input a description of a set of objects, some of which are

distinguished, and outputs a 1 if and only if at least half of the elements in the set are

distinguished. On the other hand, a counting algorithm outputs the number of distinguished

elements in the set. We present some preliminary results on using a majority algorithm to

implement a counting algorithm.

The remainder of this paper is organized as follows. In the next section we formally

introduce the basic problem, the learning scenario and the extended mistake bound model.

In Section 3 we present our results for learning an k-binary-relation. After giving a motivating

example in Section 3.1, in the next section we present some general mistake bounds. Then

in Section 3.3 we consider when the learner selects the query sequence. Next we consider

when a helpful teacher selects the query sequence. In Section 3.5 we consider when an

adversary selects the query sequence. Finally, in Section 3.6 we consider when the query

sequence is selected at random. In Section 4 we turn our attention to the problem of learning

a total order. We begin by discussing the relationship between the halving algorithm and

approximate counting schemes in Section 4.1. In particular, we describe how a fpras can be

used to implement an approximate halving algorithm. Then in Section 4.2 we present our

results on learning a total order. Finally, in Section 4.3, we describe techniques to convert

majority algorithms to counting algorithms. We conclude with a summary of our results and

discussion of open problems.
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2 Learning Scenario and Mistake Bound Model

In this section we give formal definitions and discuss the learning scenario used in this

paper. To be consistent with the literature, we shall discuss these models in terms of concept

learning. As we have mentioned, the problem of learning a binary relation can be viewed in

this framework by letting the instance be all pairs of objects, one from each of the two sets.

A concept c is a Boolean function on some domain of instances. A concept class C is a

collection of concepts. The learner's goal is to infer some unknown target concept chosen

from some known concept class. Often C is decomposed into subclasses C, according to

some natural dimension measure n. That is, for each n > 1, let Xn denote a finite learnzng

domain. Let X = Un>J Xn, and X E X denote an instance. To illustrate these definitions,

we consider the concept class of monomials. (A monomial is conjunction of literals, where

each literal is either some Boolean variable or its negation.) For this concept class n is just

the number of variables. Thus IX.I = 2n where each x E Xn is chosen from {0, 1} and

represents the assignment for each variable. For each n > 1, let C, C 2X - be a family of

concepts on X,. Let C = U,,>l C,. denote a concept class over X. For example if C, contains

monomials over n variables, then C is the class of all monomials. Given any concept c E Cn,

we say that x in c is a positive instance of c, and x in Xn - c is a negative instance of c.

In our example, the target concept for the class of monomials over five variables might be

x 1.rTxs. Then the instance "10001" is a positive instance and "00001" is a negative instance.

Fi.,iiy, Lhe hypotihests space of aigorithm A is simply the set of all hypotheses (or rules) h

that A may output. (A hypothesis for C, must make a prediction for each x E Xn.)

A prediction algorithm for C is an algorithm that runs under the following scenario.

A learning session consists of a set of trials. In each trial, the learner is given given an

unlabeled instance x E Xn. The learner uses its current hypothesis to predict if x is a

positive or negative instance of the target concept c E C, and then the learner is told the

correct classification of x. If the prediction was incorrect, the learner has made a mistake.

Note that in this model there is no training phase. Instead, the learner receives unlabeled

instances throughout the entire learning session. However, after each prediction the learner

"discovers" the correct classification. This feedback can then be used by the learner to

improve its hypothesis. A learner is consistent if, on every trial, there is some concept in C,.

that agrees both with the learner's prediction and with all the labeled instances observed on
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preceding trials.

The number of mistakes made by the learner depends on the sequence of instances pre-

sented. We extend the mistake bound model to include several methods for the selection

of instances. A query sequence is a permutation ir = (x, x 2 .,... , X,,I) of Xn where x, is

the instance presented to the learner at the tth trial. We call the agent selecting the query

sequence the director. We consider the following directors:

* Learner - The learner chooses 7r. To select xt, the learner may use time polynomial

in n and s, and all information obtained in the first t - 1 trials. In this case we say

that the learner is self-directcd.

* Helpful Teacher - A teacher who knows the target concept and wants to minimize

the learner's mistakes chooses 7r. To select xt, the teacher uses knowledge of the target

concept, xl,..., x,-, and the learner's predictions on xl,... ,xt-1. To avoid allowing

the learner and teacher to have a coordinated strategy, in this scenario we consider the

worst case mistake bound over all consistent learners. In the case we say the learner

is teacher-directed.

* Adversary - The adversary who selected the target concept chooses 7r. This adver-

sary, who tries to maximize the learner's mistakes, knows the learner's algorithm and

has unlimited computing power. In this case we say the learner is adversary-dircctcd.

* Random - In this model, 7r is selected randomly according to a uniform probability

distribution on the permutations of X,,. ]Jere the number of mistakes made by the

learner for some target concept c in C, is defined to be the expected number of mistakes

over all possible query sequences. In this case we say the learner is randomly-directed.

We consider how a prediction algorithm's performance depends on the director. Let

AZ(C) denote the set of prediction algorithms for learning concept class C with director Z.

For prediction algorithm A E AZ(C), we define the mistake bound MB(A,C,,) to be the worst

case number of mistakes made by A for any target concept in C, under any query sequence

provided by Z. (When Z = adversary, MB(A,C,) = AfA(C,,) as defined by Littlestone [15].)

We say that A is a polynomial prediction algorithm if A makes each prediction in time

polynomial in n.
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3 Learning Binary Relations

In this s, c ion we applying the learning scenario of the extended mistake bound model to

the concept class C of k-binary-relations. For this concept class the dimension measure is

nin, the number of entries in the corresponding matrix, and X,, = {1,. .,n} x {1,...,rn}.

An instance (i,j) is in the target concept c E C,,m if and only if the matrix entry in row

i and column j is a 1. So in each trial the learner is repeatedly given an instance x from

X,,, and asked to predict the corresponding matrix entry. After making its prediction, the

learner is told the correct value of the matrix entry. The learner wishes to minimize the

number of incorrect predictions it makes. Since we assume that the learner must eventually

make a prediction for each matrix entry, the number of incorrect predictions depends on the

size of the matrix.

We begin this section with a motivating example from the domain of allergy testing. We

use this example to motivate both the restriction that the matrix has k row types and the

use of the extended mistake bound model. We then present general upper and lower bounds

on the number of mistakes made by the learner regardless of the director. Finally, we study

the complexity of learning a k-binary-relation under each director.

3.1 Motivation: Allergist Example

In this section we use the following example taken from the domain of allergy testing to

motivate the problem of learning a k-binary relation.

Consider an allergist with a set of patients to be tested for a given set of allergens. Each

patient is either highly allergic, mildly allergic, or not allergic to any given allergen. The

allergist, may use either a epicutancous (scratch) test in which the patient is given a fairly

low (lose of the allergen, or a intradermal (under the skin) test in which the patient is given

a larger dose of the allergen. The patients reaction to the test is classified as strong positive,

weak positive or negatir,. Figure 1 describes the reaction that occurs for each combination

of allergy level and dosage level. Finally, we assume a strong positive reaction is extremely

uncomfortable to the patient, but not dangerous.

What options does the allergist have in testing a patient, for a given allergen? He could

just perform the intradermal test (option 0). Another option (option 1) is to perform a

ep)icutaneous test, and if it is not, conclusive, then perform an intradernial test. (See Figure 2
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Epicutaneous Intradermal

(Scratch) (Under the Skin)

Not Allergic negative negative

Mildly Allergic negative weak positive

Highly Allergic weak positive strong positive

Figure 1: Summary of testing reactions for allergy testing example.

for decision trees describing these two testing options.) Which testing option is best? If the

patient has no allergy or a mild allergy to the given allergen, then testing option 0 is best,

since the patient need not return for the second test. However, if the patient is highly allergic

to the given allergen, then testing option 1 is best, since the patient does not experience a

bad reaction. We assume the inconvenience of going to the allergist twice is approximately

the same as having a bad reaction. That is, the allergist has no preference to error in a

particular direction. While the allergist's final goal is to determine each patient's allergies,

we consider the problem of learning the optimal testing option for each combination of

patient and allergen.

The allergist interacts with the environment as follows. In each "trial" the allergist is

asked to predict the best testing option for a given patient/allergen pair. He is then told

the testing results, thus learning whether the patient is not allergic, mildly allergic or highly

allergic to the given aliergen. In other words, the allergist receives feedback as to the correct

testing option. Note that we make no restrictions on how the hypothesis is represented

as long as it can be evaluated in polynomial time. In other words, all we require is that

given any patient/allergen pair, the allergist decides which test to perform in a "reasonable"

amount of time.

How can the allergist possibly predict a patient's allergies? If the allergies of the pa-

tients are completely "random," then there is not much hope. What priori knowledge does

the allergist have? He knows that people often have exactly the same allergies. So there

are a set of "allergy types" that occur often. (We do not assume that the allergist has a

priori knowledge of the actual allergy types.) This knowledge can help guide the allergist's
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Aller icUAer I

Test
neg. weakn

pos.

Underllegi

Testt
weakk

neg. 05

NotMldlyc Highly
Allr cAllergic Allergic

Figure 2: The testing options '-vailable to the allergist.

10



predictions.

Having specified the problem we discuss our choice of using the extended mistake bound

model to evaluate learning algorithms for this problem. First of all, observe that we want

an on-line model. There is no training phase here, the allergist wants to predict the correct

testing option for each patient/allergen pair. Also we expect that the allergist has time to

test each patient for each allergen, that is the instance space is polynomial-sized. Thus as

discussed in Section 1 the distribution-free model is not appropriate.

How should we judge the performance of the learning algorithm? For each wrong predic-

tion made, a patient is inconvenienced with making a second trip or having a bad reaction.

Since the learner wants to give all patients the best possible service, he strives to minimize

the number of incorrect predictions made. Thus we want to use the absolute mistake bound

success criteria. Namely, we judge the performance of the learning algorithm by the number

of incorrect predictions made during a learning session in which he must eventually test each

patient for each allergen.

Up to now, the standard on-line model (using absolute mistake bounds to judge the

learners) appears to be the appropriate model. We now discuss the selection of the instances.

Since the allergist has no control over the target relation (i.e. that allergies of his patients),

it makes sense to view the feedback as coming from an adversary. However, do we really

want an adversary to select the presentation order for the instances? It could be that the

allergist is working for a cosmetic company and due to restrictions of the Food and Drug

Administration and the cosmetic company the allergist is essentially told when to test each

person for each allergen. In this case, it is appropriate to have an adversary select the

presentation order. However, in the typical situation, the allergist can decide in what order

to perform the testing so that he can make the best predictions possible. In this case, we want

to allow the learner to select the presentation order. One could also imagine the situation

where a intern is being guided by an experienced allergist, and thus a teacher helps to select

the presentation order. Finally, random selection of the presentation order may provide us

with a better feeling for the behavior of an algorithm. Thus the learning model that is most

appropriate for this example is the extended mistake bound model.

11



3.2 General Mistake Bounds

In this section we begin our study of learning k-binary-relations by presenting general lower

and upper bounds on the mistakes made by the learner regardless of the director.

Throughout this section, we using the following notation. We say an entry (ij) of the

matrix (Mij) is known if the learner was previously presented that entry. We assume without

loss of generality that the learner is never asked to predict the value of a known entry. We

say rows i and i' are consistent (given the current state of knowledge) if M,3 = M¢ for all

columns j in which both entries ij and i',j are known.

We now look at general lower and upper bounds on the number of mistakes that apply for

all directors. Clearly, any learning algorithm makes at least km mistakes for some matrix,

regardless of the query sequence. The adversary can divide the rows into k groups and reply

that the prediction was incorrect for the first column queried for each entry of each group.

We generalize this approach to force mistakes for more than one row of each type.

Theorem 1 For any 0 < /3 < 1, any prediction algorithm makes at least (1 - /)km +

n[lg(flk)J - (1 - I3)k lg(/#k)J mistakes regardless of the query sequence.

Proof: The adversary selects its feedback for the learner's predictions as follows. For each

entry in the first Llg /3kJ columns the adversary replies that the learner's response is incorrect.

At most 3k new row types are created by this action. Likewise, for each entry in the first

(1 - O)k rows the adversary replies that the learner's response is incorrect. This creates

at most (1 - fl)k new row types. The adversary makes all remaining entries in the matrix

zero. (See Figure 3.) The number of mistakes is the area of the unmarked region. Thus

the adversary has forced at least (1 - #)km + n[lg(flk)J - (1 - #3)kLlg(#k)J mistakes while

creating at most flk + (1- 3)k = k row types. U

By letting /3 = I we obtain the following corollary.

Corollary 1 Any algorithm makes at least !- + (n - 1) [lg k - lJ mistakes in the worst case

regardless of the query sequence.

If computational efficiency is not a concern, for all query sequences the halving algo-

rithm [3, 15] provides a good mistake bound.

Observation 1 The halving algorithm achieves a km + n lg k mistake bound.

12
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Figure 3: The final matrix created by the adversary in the proof of Theorem 1. All entries

in the unmarked area will contain the bit not predicted by the learner. That is, a mistake is

forced on each entry in the unmarked area. All entries in the marked area will be zero.

Proof: We use a simple counting argument on the size of the concept class. There are 2 km

ways to select the k row types, and k'n ways to assign one of the k row types to each of the n

rows. Thus ICI 2k'kn. Littlestone [15] proves that the halving algorithm makes at most

lg ICI mistakes. thus the number of mistakes made by the halving algorithm for this concept

class is at most lg(2 mkn) < km + n Ig k. 0

In the remainder of this section we study efficient prediction algorithms designed to

perform well against each of the directors. For some directors we are also able to prove

information-theoretic lower bounds that are better than that of Theorem 1. In Section 3.3

we consider the case that the query sequence is selected by the learner. We study the helpful-

teacher director in Section 3.4. Finally, in Section 3.5 we consider the case of an adversary

director.

3.3 Self-Directed Learning

In this section, we present an efficient algorithm for learning the matrix for the case in which

the learner is the director.

13



Theorem 2 There exists a polynomial prediction algorithm that achieves a km+ (n - k) [ig k]

mistake bound with a learner-selected query sequence.

Proof: The query sequence selected simply specifies the entries of the matrix in row-major

order. The learner begins assuming there is only one row type. Let k denote the learner's

current estimate for k. So initially k = 1. For the first row, the learner guesses each entry.

(This row becomes the template for the first row type.) Next the learner assumes that the

second row is the same as the first row. If he makes a mistake then the learner revises his

estimate for k to be 2, guesses for the rest of the row, and uses that row as the template for

the second row type. In general, to predict Mij, the learner predicts according to a majority

vote of the recorded row templates that are consistent with row i (breaking ties arbitrarily).

Thus, if a mistake is made, then at least half of the row types can be eliminated -s the

potential type of row i. If more than [lg k] mistakes are made in a row, then a new row type

has been found. In this case, k is incremented, the learner guesses for the rest of the row,

and makes this row the template for row type k + 1.

How many mistakes are made by this algorithm? Clearly, at most m mistakes are made

for the first row found of each of the k types. For the remaining n - k rows, since k < k, at

most [ig kJ mistakes are made. E

Note that this algorithm need not know k a priori. Furthermore, it obtains the same

mistake bound even if an adversary tells the learner which row to examine, and in what

order to predict the columns, provided that the learner sees all of a row before going on to

the next. We note that this upper bound is within a constant factor of the lower bound of

Corollary 1. However, this problem becomes harder if the adversary can select the query

sequence without restriction.

3.4 Teacher-Directed Learning

In this section, we present upper and lower bounds on the number of mistakes made under

the helpful-teacher director. Recall that in this model, we consider the worst case mistake

bound over all consistent learners. Thus the question asked here is, what is the minimum

number of matrix entries a teacher must reveal so that there is a unique completion of the

matrix. That is, until there is a unique completion of the partial matrix, a mistake could be

made on the next prediction.

14



We now prove an upper bound on the number of entries needed to uniquely define the

target matrix.

Theorem 3 The number of mistakes made with a helpful teacher as the director is at most

km + (n- k)(k- 1).

Proof: First, the teacher presents the learner with one row of each type. For each of the

remaining n - k rows the teacher presents an entry to distinguish the given row from each of

the k - 1 incorrect row types. After these km + (n - k)(k - 1) entries have been presented

we claim that there is a unique matrix with at most k row types that is consistent with

the partial matrix. Since all k distinct row types have been revealed in the first stage, all

remaining rows must be the same as one of the first k rows presented. However, each of the

remaining rows have been shown to be inconsistent with all but one of these k row templates.

U

Is Theorem 3 the best possible such result? Clearly the teacher must present a row of

each type. But, in general, is it really necessary to present k- 1 entries of the remaining rows

to uniquely define the matrix? We now answer this question in the affirmative by presenting

a matching lower bound.

Theorem 4 The number of mistakes made with a helpful teacher as the director is at least

min{nm, km + (n - k)(k - 1)}.

Proof: The adversary selects the following matrix. The first row type consist of all zeros.

For 2 < z < min{m + 1, k}, rows type z contains z - 2 zeros, followed by a one, followed

by m - z + 1 zeros. The first k rows are each assigned to be a different one of the k row

types. Each remaining row is assigned to be the first row type. (See Figure 4.) Until there

is a unique completion of the partial matrix, by definition there exists a consistent learner

that could make a mistake. Clearly if the learner has not seen each column of each row type,

then the final matrix is not uniquely defined. This part of the argument accounts for km

mistakes. When m + I > k, for the remaining rows unless all of the first k - 1 columns are

known, there is some row type besides the first row type that must be consistent with the

given row. This argument accounts for (n - k)(k - 1) mistakes. Likewise, when m + 1 < k

then if any of the first m columns are not known then there is some row type besides the first

row type that must be consistent with the given row. This accounts for (n - k)m mistakes.

Thus the total number of mistakes is at least min{nm, km + (n - k)(k - 1)}. U
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Figure 4: The matrix created by the adversary against the helpful teacher director. In this

example, there are 5 row types which appear in the first five rows of the matrix.

We note that due to the restriction that the mistake bound in the helpful teacher director

apply for all consistent learners, it is possible to get mistake bounds that are not as good as

the bounds obtained when the learner is self-directed. Recall that in the previous section,

we proved an km + (n - k) flg k] mistake bound under the learner director. This bound is

better than that obtained with a teacher because the learner uses a majority vote among the

known row types for making predictions. However, a consistent learner may use a minority

vote and could thus make km + (n - k)(k - 1) mistakes.

3.5 Adversary-Directed Learning

In this section we derive upper and lower bounds on the number of mistakes made by any

learning algorithm for an adversary as the director. We first present an information-theoretic

lower bound on the number of mistakes an adversary can force the learner to make. Next, we

present an efficient prediction algorithm that achieves an optimal mistake bound if k < 2.

Next we consider the related problem of computing the minimum number of row types

needed to complete a partially known matrix. We then consider learning algorithms that

work against an adversary for arbitrary k. We present an upper and lower bound on the

number of mistakes made by a specific type of algorithm.

We now present an information-theoretic lower bound on the number of mistakes made

by any prediction algorithm when the adversary selects the query sequence. We obtain this

16



result by modifying the technique used in Theorem 1.

Theorem 5 Any prediction algorithm makes at least min{nm, krn + (n - k) [ig kJ } mistakes

against an adversary-selected query sequence.

Proof: The adversary starts by presenting all entries in the first [lg kj columns (or m

columns if m < [lg kJ) and replying that each prediction is incorrect. If m > [lg kj, this

step causes the learner to make n Llg kj mistakes. Otherwise, this step causes the learner

to make nm mistakes. Each row can now be classified as one of k row types. Next the

adversary presents the remaining columns for one row of each type, again replying that each

prediction is incorrect. For m > [lg kJ this step causes the learner to make k(m -- [lg kJ)

additional mistakes. For the remaining matrix entries, the adversary replies as dictated by

the completed row of the same row type as the given row. So the number of mistakes made

by the learner is at least min{nm,n[lgkj + kr - kLlgkj} = min{nm, km + (n - k)[lgkj}.

3.5.1 Special Case: k = 2

We now consider efficient prediction algorithms for learning the matrix under an adversary-

selected query sequence. (Recall that if efficiency is not a concern the halving algorithm

makes at most km + (n - k) lg k mistakes.) In this section we consider the case that k < 2,

and present an efficient prediction algorithm that performs optimally.

Theorem 6 There exists a polynomial prediction algorithm that makes at most 2m + n - 2

mistakes against an adversary-selected query sequence for k = 2.

Proof: The algorithm uses a graph G whose vertices are the rows of the matrix and that

initially has no edges. To predict Mij the algorithm 2-colors the graph G, and then:

1. If no entry of column j is known, it guesses randomly.

2. Else if every known entry of column j is zero (respectively, one), it guesses zero (one).

3. Else it finds a row i' of the same color as i and known in column j, and guesses M:,j.

Finally, after the prediction is made and the feedback received, the graph G is updated by

adding an edge Wii to G for each row i' known in column j for which Mij 0 Mi,j.Note that
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Figure 5: The situation occurring if G does not have a unique coloring after n - 1 edges

have been added. The thick grey edges and the thick black edge show the cycle in G. Let e

(shown as a thick black edge) be the edge added to form the cyclo.

one of the above cases always applies. Also, since k = 2, it will always be possible to find a

2-coloring.

How many mistakes can this algorithm make? It is not hard to see that cases 1 and 2

1ach occur only once for every column, so there are at most m mistakes made in each of

these cases. Furthermore, the first case 2 mistake adds at least one edge to G. When a

mistake is made in case 3, the algorithm learns that two rows are different, thus adding at

least one edge to G between two nodes currently of the same color. So after at most n - 2

case 3 mistakes, G has n - 1 edges.

We now prove that when G has n - 1 edges there is a unique 2-coloring2 of G. Suppose

there is not a unique 2-coloring. This assumption implies that there exists a set S of nodes,

where S contains at least one node and at most n - 1 nodes, such that the color of all nodes in

S can be reversed without causing two adjacent nodes to be the same color. Thus it follows

that G is not connected. However G has n - 1 edges and thus there exists some connected

component of G that must have a cycle. (See Figure 5.) We now separately consider the

cases that this cycle contains an odd number of edges or an even number of edges.

* Case 1: Odd-length cycle. Let e = TYW be the last edge placed in the cycle.

Consider the 2-coloring of G during the step of the algorithm when e was added. Since

vi and v2 were connected by an even number of edges, in any legal 2-coloring they

must have been the same color. Thus we get a contradiction since a mistake could not
2Two colorings under renaming of the colors are considered to be the same.
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have occurred.

* Case 2: Even-length cycle. Consider the last edge e = Vj-j placed in the cycle.

Before e was added, since v, and v2 were connected by an odd number of edges, in any

legal 2-coloring they must have been different colors. Since Step 3 of the algorithm

picks nodes of the same color, an edge could have never been placed between v, and

v2 . Thus we again have a contradiction.

In both cases we reach a contradiction, and thus we have shown that after G has n - 1 edges

there is a unique 2-coloring. So after at most n - 2 case 3 mistakes, there must be a unique

coloring of G and no more mistakes can occur. Thus, the worst case number of mistakes

made by this algorithm is 2m + n - 2. M

Note that for k = 2 this upper bound matches the information-theoretic lower bound

of Theorem 5. We also note that if there is only one row type then the algorithm given in

Theorem 6 makes at most m mistakes, matching the information-theoretic lower bound.

An interesting theoretical question is to find a linear mistake bound for constant k > 3

when provided with a k-colorability oracle. However, such an approach would have to

be greatly modified to yield a polynomial prediction algorithm since a polynomial-time

k-colorability oracle exists only if P = Ar. Furthermore, even good polynomial time

approximations to a k-colorability oracle are not known [4, 14].

The remainder of this section focuses on designing polynomial prediction algorithms for

the case that the matrix has at least three row types. One approach that may seem promising

is to make predictions as follows. Compute a matrix that is consistent with all known entries

and that has the fewest possible row types. Then use this matrix to make the next prediction.

We now show that even computing the minimum number of row types needed to complete

a partially known matrix is AR-complete. Formally, we define the matrix k-complexity

problem as follows: given an n x m binary matrix M that is partially known, decide if there

is some matrix with at most k row types that is consistent with M. The matrix k-complexity

problem can be shown to be VR-complete by a reduction from graph k-colorability for the

cases where k > 2 and m > n.

Theorem 7 For k > 2 and m > n, the matrix k-complexity problem is A/r-cnm.plete.

Proof: We use a reduction from graph k-colorability. Given an instance G = (V, E) of

graph k-colorability we transform it into an instance of the matrix k-complexity problem.
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Figure 6: An example of the reduction used in Theorem 7. The graph G is the instance for

the graph coloring problem. The partial matrix M is the instance for the matrix complexity

problem. We note that there exists a matrix that is an completion of M that uses only three

row types. The corresponding 3-coloring of G is demonstrated by the node colorings used in

G.

Let n = IlV. For each edge {vi, vi} E E, we add entries to the matrix so that row i and row

j cannot be the same row type. Specifically, for each vertex vi, we set Mi = 0, and Mji = 1

for each neighbor vj of vi. An example demonstrating this reduction is given in Figure 6.

We now show that there is some matrix of at most k row types that is consistent with

this partial matrix if and only if G is k-colorable. We first argue that if there is a matrix M'

consistent with M that has at most k row types then G is k-colorable. By the construction

if two rows are of the same type there cannot be an edge between the corresponding nodes.

So just let the node color for each node be the type of the corresponding row in M'.

We now argue that if G is k-colorable, then there exists a matrix M' consistent with M

that has at most k row types. By the construction of M, if a set of vertices are the same

color in G then the corresponding rows are consistent with each other. Thus there exists a

matrix with at most k row types that is consistent with M. u
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3.5.2 Row-Filter Algorithms

In this section we study the performance of a whole class of algorithms designed to learn a

matrix with arbitrary complexity k when an adversary selects the query sequence. We say

that an algorithm A is a row-filter algorithm if A makes its prediction for Mij strictly as a

function of j and all entries in the set I of rows consistent with row i and defined in column

j. That is, A's prediction is f(I,j) where f is some (possibly probabilistic) function. So, to

make a prediction for Mij, a row-filter algorithm considers all rows that could be the same

type as row i and whose value for column j is known, and uses these rows in any way one

could imagine to make a prediction. For example it could take a majority vote on the entries

in column j of all rows that are consistent with row i. Or, of the rows defined in column j,

it could select the row that has the most known values in common with row i and predict

according to its entry in column j. We have found that many of the prediction algorithms

we considered are row-filter algorithms.

Consider the simple row-filter algorithm, ConsMajorityPredict, in which f(I, j) computes

the majority vote of the entries in column j of the rows in I. (Guess randomly in the case of

a tie.) Note that ConsMajorityPredict only takes time linear in the number of known entries

of the matrix to make a prediction. We now give an upper bound on the number of mistakes

made by ConsMajorityPredict.

Theorem 8 The algorithm ConsMajorityPredict makes at most km + n /(k - 1)m mistakes

against an adversary-selected query sequence.

Proof: For all i, let d(i) be the number of rows consistent with row i. We define the potential

of a partially known matrix to be 4) = E!'= d(i). We begin by considering how much the

potential function can change over the entire learning session.

Lemma 1 The potential function '1 decreases by at most kk-n 2 during the learning session.

Proof: Initially for all i, d(i) = n. So 4 ,t,, = n 2. Let C(z) be the number of rows of type z

for 1 < z < k. By definition, 4 nna = Ek=l C(z) 2. Thus our goal is to minimize E =1 C(z) 2

under the constraint that Z=jI C(z) = n. Using the method of Lagrange multipliers we

obtain that ) fin,, is minimized when for all z, C(z) = n/k. Thus 4bfinal > (n/k)2 k - /k.
So A4) = 4)init - 4 ) final < n

2 - = k-l n-2.
mit - k Ick-'

Now that the total decrease in () over the learning session is bounded, we need to deter-

mine how many mistakes can be made without (P decreasing by more than k !.n2. We begin
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by noting that 4) is strictly decreasing. Once two rows are found to be inconsistent, they

remain inconsistent. So for each i, d(i) is strictly decreasing, and thus ) is strictly decreas-

ing. So to bound the number of mistakes made by ConsMajorityPredict we must compute

a lower bound on the amount 4) is decreased by each mistake. Intuitively, one expects 4 to

decrease by larger amounts as more of the matrix is seen. We formalize this intuition in the

next two lemmas.

Lemma 2 The rth mistake made when predicting an entry Mij in column j of some row i

of type z decreases 4) by at least 2(r - 1).

Proof: Consider all the rows of type z. Since r - 1 mistakes have occurred in column j

of these rows, at least r - I entries are known in column j of rows of type z. Since these

rows must be in I, if a mistake occurs there must be at least r - 1 entries in I (and thus

consistent with row i) that differ in column j with row i. Thus if a mistake is made, row i is

found to be inconsistent with at least r - 1 rows it was thought to be consistent with. When

two previously consistent rows are found to be inconsistent, 4) decreases by two. Thus the

total decrease in 4) caused by the r1h mistake made when predicting an entry in column j of

some row of type z decreases 4) by at least 2(r - 1). 0

From Lemma 1, we see that the more entries that are known in a given column of a given

row type, the greater the decrease in () for future mistakes on such entries. So, intuitively

it appears that the adversary can maximize the number of mistakes made by the learner

by balancing the number of entries seen for each column of each row type. We prove that

this intuition is correct and apply it to obtain a lower bound on the amount () must have

decreased after the learner has made it mistakes.

Lemma 3 After p mistakes are made, the total decrease in D is at least km - 1)2.

Proof: From Lemma 2, after the rt mistake in column j of row type z, the total decrease

in 4D from its initial value is at least E'=, 2(x - 1) > (r - 1)2. Let W(j,z) be the number of

mistakes made in column j of rows of type z. The total decrease in () is at least

m k

D = (W(j)- 1, 2

j=1 z=l

subject, to the constraint ZLI Ek= W(1 , z) = 1.
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Using the method of Lagrange multipliers, we obtain that d is minimized when W(j, z) =

J"- for all j and z. So the total decrease in t is at leastkm

,EE --m k ' -
=--1 z=I

We now complete the proof of the theorem. Combining Lemma 1 and Lemma 3 along

with the observation that t is strictly non-increasing, we have shown that when
\/ 2 k-ln

km __-1)2 >k-1n2
(km - k

then 4t must have decreased as much as it can and thus no more mistakes will occur. Solving

for p we obtain that 4) has decreased by its maximum amount when it = km + n (k - 1)m.

N

We note that by using the simpler argument that each mistake, except for the first mistake

in each column of each row type, decreases 4) by at least 2, we obtain a km + --In2 mistake

bound for any row-filter algorithm. Also, Manfred Warmuth [241 has independently given

an algorithm, based on the weighted majority algorithm of Littlestone and Warmuth [16],

that achieves an O(km + nV'/IT) mistake bound. Warmuth's algorithm builds a complete

graph of n vertices where row i corresponds to vertex vi and all edges get an initial weight of

1. To predict a value for (i,j) the learner takes a weighted majority of all active neighbors

of v, (Vk is active if (k,j) is known). After receiving feedback, the learner sets the weight on

the edge from vi to vk to be 0 if (k,j) # (i,j). Finally, if a mistake occurs the learner doubles

the weight of (vi,vk) if (k,j) = (i,j) (i.e. the edges to neighbors that predicted correctly).

We note that this algorithm is not a row-filter algorithm.

Does ConsMajorityPredict give the best performance possible by a row-filter algorithm?

We now present an information-theoretic lower bound on the number of mistakes an adver-

sary can force against any row-filter algorithm.

Theorem 9 Let p be a prime and let m = (p2 +p+ 1). Any row-filltr algorithm for learning

a 2n x m. matrix with m > n and k > 2 makes at least n(p + 1) = Q(nV'mh) mistakes when

the adversary selects the query sequence.

Proof: We assume that the adversary knows the learner's algorithm and has access to any

random bits he uses. (One can prove a similar lower bound on the expected mistake bound

when the adversary cannot access the random bits.)
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Figure 7: A projective geometry for p = 2, m = 7.

Our proof depends upon the existence of a projective geometry r on m points and lines [5].

That is, there exists a set of m points and a set of m lines such that each line contains exactly

p + 1 points and each point is at the intersection of exactly p + 1 lines. Furthermore, any pair

of lines intersects at exactly one point, and any two points define exactly one line. Figure 7

shows a matrix representation of such a geometry; an "x" in entry i,j indicates that point

j is on line i. We use the first n lines of F.

The matrix M consists of two row types: the odd rows are filled with ones and the

even rows with zeros. Imagine assigning two rows of M to each line of F. (See Figure 8).

We now prove that the adversary can force a mistake for each entry of F. The adversary's

query sequence maintains the condition that an entry i,j is not revealed unless line [i/21

of r contains point j. In particular, the adversary will begin by presenting one entry of the

matrix for each entry of r. We prove that for each entry of F the learner must predict the

same value for the two corresponding entries of the matrix. Thus the adversary forces a

mistake for the n(p + 1) = fl(nV/I-) entries of F. The remaining entries of the matrix are

then presented in any order.

Let I be the set of rows that may be used be the row-filter algorithm when predicting

entry (2i,j). Let I' be the set of rows that may be used by the row-filter algorithm when

predicting entry (2i - 1,j). We prove by contradiction that I = I'. If I - I' then it must

be the case that there is some row r that is defined in column j and consistent with row 2i,

yet inconsistent with row 2i - 1. By definition of the adversary's query sequence it must be
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Figure 8: The matrix created by the adversary in the proof of Theorem 9. The shaded

regions correspond to the entries in the first n lines of F. The learner is forced to make a

mistake on one of the entries in each shaded rectangle.

the case that lines [r/2] and [(2i - 1)/2] of F contain point j. Furthermore, since 2i - 1,j

is being queried that entry is not known. Thus rows r and 2i - 1 must both be known in

some other column j' since they are known to be inconsistent. Thus since only entries in F

are shown, it follows that lines [r/2] and [(2i - 1)/21 of F also contain point j' for j' # j.

So, this implies that lines [r/21 and [(2i - 1)/2] of F must intersect at two points giving a

contradiction. Thus I = I' and so f(I,j) = f(',j) for entry (2i,j) and entry (2i - Ij).

Since the rows differ in each column the adversary can force a mistake on one of these entries.

Since the adversary has access to the random bits of the learner, he can compute f(I,j) just

before making his query, and ask the learner to predict the entry for which the mistake will

be made. This procedure is repeated for the pair of entries corresponding to each element

of F. 0

We use a similar argument to get an Q(mv/'n) bound for m < n. Combined with the lower

bound of Theorem 5 and Theorem 9 we obtain a f7(krn + (n - k)[lg kJ + min{nv/T, mV"})

lower bound on the number of mistakes made by a row-filter algorithm.

Corollary 2 Any row-filter algorithm makes Q(km + (n - k)[lgkJ + min{nV/'i,m#v1n)

mistakes against an adversary-selected query sequence.

Comparing this lower bound to the upper bound proven for ConsMajorityPredict, we see

that for fixed k the mistake bound of ConsMajorityPredict is within a constant factor of
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optimal.

Given this lower bound, one may question the 2m + n - 2 upper bound for k = 2 given in

Theorem 6. However, the algorithm described is not a row-filter algorithm. Also compared

to our results for the learner-selected query sequence, it appears that allowing the learner to

select the query sequence is quite helpful.

3.6 Randomly-Directed Learning

In this section we consider the case that the learner is presented at each step with one of

the remaining entries of the matrix selected uniformly and independently at random. We

present a prediction algorithm that makes O(km + nkVl'H) mistakes on average where H is

the maximum Hamming distance between any two rows of the matrix. We note that when

H = Q(M) the result of Theorem 8 supersedes this result. A key result of this section is a

proof relating two different probabilistic models for analyzing the mistake bounds under a

random presentation. We first consider a simple probabilistic model in which the requirement

that t matrix entries is known is simulated by assuming that each entry of the matrix is seen

independently with probability -L. We then prove that any upper bound obtained on the

number of mistakes under this simple probabilistic model holds under the true model (to

within a constant factor) in which we have exactly t entries known. This result is extremely

useful since in the true model the dependencies among the probabilities that matrix entries

are known makes the prove significantly more difficult.

We define the algorithm RandomConsistentPredict to be the row-filter algorithm where

the learner makes his prediction for Mij by choosing one row i' of I uniformly at random and

predicting the value of Mi,j. (If I is empty then Random ConsistentPredict makes a random

guess.)

Theorem 10 Let H be the maximum Hamming distance between any two rows of M. Then

the expected number of mistakes made by RandomConsistentPredict is O(k(nvf-! + m)).

Proof: Let Ut be the probability that the prediction rule makes a mistake on the (t + 1)st

step. That is, Ut is the chance that a prediction error occurs on the next randomly selected

entry given that exactly t other randomly chosen entries are already known. Clearly, the

expected number of mistakes is E 0 Ut, where S = nm. Our goal is to find an upper bound

for this sum.
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The condition that exactly t entries are known makes the computation of Ui rather messy

since the probability of having seen some entry of the matrix is not independent of knowing

the others. Instead, we compute the probability Vt of a mistake under the simpler assumption

that each entry of the matrix has been seen with probability t/S, independent of the rest of

the matrix. We first compute an upper bound for the sum Es_0' V, and then show that this

sum is within a constant factor of s' U.

Lemma 4 s_-Vt = O(km + nkVff).

Proof: Fix t, and let p = t/S. For any row i we define d(i) to be the number of rows of

the same type as row i. We first prove, that without loss of generality, we can assume that

d(i) > 1 for all 1 < i < n. Namely, if this lemma holds for this restricted case, then it holds

in the general case. Suppose there are n' rows that are each different from all other rows.

Applying this lemma to the relation obtained by removing the n' objects that have distinct

row types and then adding in the mistakes for these removed objects we get:

S1 vt = o ((k- n')m + n'(k-n)i/J) +n'm

t=o

= o(km + n'(k - n')!-!)

= O(km + nkvi/i).

Thus for the remainder of this proof we may assume that d(i) > 1 for all i.

We compute V as

Vt = Pr[a mistake is made I Mij is unknown and ij is presented next]. (1)

If some of the rows known in column j are consistent with row i, then the probability of a

mistake in row i, column j is the chance that one of these rows i' (chosen at random) differs

from row i in the jth column, or

Ei Pr[Mij : Mi,j A rows i, i' are consistent]

Ei,Z i Pr[rows i, i' are consistent] (2)

(For brevity, we omit the implicit conditions that entry i,j is unknown and i',j is known.)

We first focus on the numerator of Expression 2. We define r0 as the expected number

of rows of the same type as row i and defined in column j. Since in the d(i) - 1 rows of the

same type as row i, column j is known with probability p,

ro = (d(i) - 1)p.
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Next we define r, to be the expected number of rows of a different type from row i that

are consistent with row i and defined in column j. Consider a column, c, in which some row

i' differs from row i. With probability 1 - p 2 either i or i' is not seen in column c and thus

row i and i' are not detected to be inconsistent in column c. We know that row i is not

known in column j and thus the number of columns for which we may detect that i and i'

are different depends on whether i and i' differ in column j. Let h(i, i') be the Hamming

distance between rows i and i'. Let h'(i, i') be the number of column in which i and i' differ

excluding column j. Since column j of row i' is seen with probability p,

r1 = E p(1 - 2)h,(,,,).

Finally, since (1 - p2) < 1 and h'(i,i') > h(i, i') - 1,

,., <5 p(I 2)-~ i)i

Finally, we define r 2 to be the expected number of rows that are consistent with row i

and defined in column j, but different from row i in column j. Only the rows meeting the

conditions for r, are considered in the set I, and with probability of hi), the row i' differs

from row i in column j. Thus

r2_ h h(i, i') p(1 - p)hii-.

We can now evaluate the numerator of Expression (2). Namely,

E Pr[Mij # Mi,j A rows i, i' are consistent] = r2 < r2

i,96i r0 + rl r0

We now compute a lower bound on the denominator of Equation 2 so that we can get

an upper bound on the entire expression. Since two rows of the same row type are always

consistent, it follows that

E Pr[rows i,i' are consistent] d(i)- 1.
vig~

Recall Expression (2) for the probability of making a mistake when predicting Mij given

that some row consistent with row i was defined in column j. An error can also occur when

there are no consistent rows known in column j. The situation occurs with probability at

most (1 - p)d(i)-l siace the jth column of any row is not seen with probability (1 - p) and
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this column must not be seen in each of the d(i) - 1 other rows of the same type as row i.

Combining these facts, we have

I~ (I _ ~(l P)d(i) -I + 1 h (i, i')p(1 l 2hii)~

Vt ! §1 :mp(d(i) -
Si=1 j=l 1 - e. ,+F_ i(;

- - + 1 n h(i, i')(1 - p2)h(iX)'-1

n- " i=1 i d(i) -1

Recall that our goal is to upper bound the sum Es' Vt. Applying the above upper bound

for Vt we get

V, (I (1 _ p)d(i)-1) + S _ h(i, i')(I _ 2hii)-(3Vt :EE § d(i) -l11 p.~~'- 3
t=O t=O "=1 t=O (i=1 il~i

We now evaluate the first part of the above expression. We begin by noting that

(1(1-- P)d(1) 1 n + fS (1 )d()- dt)r-._ nE n E d, 3
t=O (i=1 Y"i=1

Since

fS(1l- t)
d(i) -I = IS (S_t)

d(i)- 1 dt = IS tS)
d(i)- dt =-S

we get that

1 = 1 +

'" 1
- +m d-km+1. (4)

i=1 d(i)

We obtain the last step of the equality by rewriting the summation to go over all the row

types: there are n(r) terms for rows of type r and thus each row type contributes 1 to the

summation.

We are now ready to evaluate the second part of Expression 3. To complete the proof of

the theorem we must show that

1: d"i- (1 -p)) = O(nkv -'H).
t=O i 1=l iloi di

First we consider the case in which h(i,i') = 1. In this case the second part of Expres-

sion simplifies to:
1 dO(nk). (5)
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Next we consider when h(i, i') > 1. We begin by deriving an upper bound for the second

part of Expression 3 of

By analyzing the integral and applying the inequality e' > 1 + x we get

S(1 t () 2)h~~) d < jsxp ()(h(i, i') - 1)}dt. (6)

A standard integral table [9] gives

0expf-~a 2 X2dx N -

So letting a = S and x = t one gets that

j0exp - (h(i,i')- 1) dt = 2 / - 1" (7)

By combining equations (6) and (7) we get that

IS(,- 2 ) dt < 2hi i) (8)

JO ( 2 Vh(i,i') -1

Therefore, the second part of Expression 3 can be upper bounded by
1 n h (i, V) (+ I~S (I1-p2) h (i 'i ' )- 1 dr)

E = i# d(i) - 1

I- d -l h + hi)

i=1 i'96i 2 ~
m n I V/7- n h (Z, i')<( -I + -2
- ixigi~i- i= igi (d(i) - 1) /h (i, i') - 1

= (nk + nkx 7) = 0(nkvri). (9)

Finally putting together Equations 4, 5 and 9 we obtain an O(km+nkv'-i) bound as desired.

To complete the theorem, we prove the main result of this section, namely, the upper

bound obtained under this simple probabilistic model holds (to within a constant factor)

for the true model. In other words, to compute an upper bound on the number of mistakes

made by a prediction algorithm when the instances are selected according to a uniform

distribution on the instance space, one can replace the requirement that exactly t matrix

entries are known by the requirement that each matrix entry is known with probability -.
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Lemma 5 S-1Ut = O (SoV)

Proof: We first note that

Vt=S-1(S) (t y(I _ t)Sru

To see this, observe that for each r, where r is the number of known entries, we need just

multiply Ur by the expectation that exactly r entries are known where each entry is known

with probability of t/S. Therefore,

S-i S-IS-i (S) ( t) Sr(0Ev = U ) ) - (10)
t=O t=O r-O

Thus, to prove the lemma, it suffices to show that the inner summation is bounded below

by a positive constant. By symmetry, assume that r < S/2 and let y = S - r. By applying

Stirling's approximation we obtain that

()(SS I).

Applying this formula to the desired summation we obtain that

S (S) ( t - )S-r ( S ( t

fo all 1, 

r(

t=O~S~ (St=xr Y Y

(SV7YS r X)r(L )Y)

311

The last step above follows by letting x t - r and reducing the limits of the summation. To

complete the proof that the inner summation of Equation 11I is bounded below by a positive

constant we need just prove that

(r + Xr (y _9)y

for all 1 < x < r/

Using the inequality 1 + x < e', it can be shown that for 1 + y 0, 1 + y > I+ We

apply this observation to get that

+ r (_ )y+ X'rI _y
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> exp x - =exp{-x}-+ - - r +x y-x
I It

I (r + x)(y -7)1= exp (r + "

Since x < VFy/S, it follows that Sx 2 <_ ry. Applying this observation to the above inequality

we get that

(r+x)>( ) exp { r }

= exp ry+ (y r) -x
2 }

-ry
exp{ I yr/ = exp I}I .

Finally we note that for S > 2, ear 7 > e-2 . This completes the proof of the lemma. *
Combining Lemma 4 and Lemma 5 we obtain that Es_0 Ut = O(km + nkvf'H) giving

the desired result.

This completes our discussion of learning a k-binary-relation.

4 Learning a Total Order

In this section we present our results for learning a binary relation on a set where it is known

a priori that the relation forms a total order. One can view this problem as that of learning

a total order on a set of n objects where an instance corresponds to comparing which of two

objects is greater in the target total order. Thus this problem is like comparison-based sorting

except for two key differences: we vary the agent selecting the order in which comparisons

are made (in sorting the learner does the selection) and we charge the learner only for all

incorrectly predicted comparisons.

Before describing our results, we motivate this section with the following example. There

are n basketball teams that are competing in a round-robin tournament. That is, each team

will play all other teams exactly once. Furthermore, we make the (admittedly simplistic)

assumption that there is a ranking of the teams such that a team wins its match if and only if

its opponent is ranked below it. The learner wants to place a $10 bet on each game: if it bets

on the winning team it wins $10 and if it bets on the losing team it loses $10. Of course, the

goal of the learner is to will as many bets as possible. We formalize the problem of learning
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a total order as follows. The instance space X = U,,>,X,, = {1,...,n} x {1,... ,n}. An

instance (i,j) in X is in the target concept if and only if object i precedes object j in the

corresponding total order.

In the next section we discuss the relation between the halving algorithm and approximate

counting. Then we show how to use an approximation scheme to implement a randomized

version of the approximate halving algorithm, and apply this result to the problem of learning

a total order on a set of n element. Finally, we discuss how a majority algorithm can be

used to implement a counting algorithm.

4.1 The Halving Algorithm and Approximate Counting

In this section we review the halving algorithm and approximate counting schemes. We first

cover the halving algorithm [3, 151. Let V denote the set of concepts in C,' that are consistent

with the feedback from all previous queries. Given an instance x in X,,, for each concept in V

the halving algorithm computes the prediction of that concept for x and predicts according

to the majority. Finally, all concepts in V that are inconsistent with the correct prediction

are deleted. Littlestone [15] shows that this algorithm makes at most lg IC.I mistakes. Now

suppose the prediction algorithm predicts according to the majority of concepts in set V, the

set of all concepts in C, consistent with all incorrectly predicted instances. Littlestone [15]

also proves that this space-efficient halving algorithm makes at most lg IC,,I mistakes. So

for any prediction algorithm A that only remembers its mistakes, the number of instances

stored by A is bounded by MB(A,C(,).

We define an approximate halving algorithm to be the following generalization of the

halving algorithm. Given instance x in Xn an approximate halving algorithm predicts in

agreement with at least IVI of the concepts in V for some constant 0 < O < 1/2.

Theorem 11 An approximate halving algorithm makes at most log(,,,)-, IC.I mistakes for

concept class C.

Proof: Each time a mistake is made, the number of concepts that remain in V are reduced

by a factor of at least l-W. Thus after at most log(,-,)- IC[,! mistakes there is one consistent

concept left in C,,. U

We note that the above result holds for the space-efficient version of the approximate

halving algorithm.
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We now introduce the notion of an approximate counting scheme for counting the number

of elements in a finite set S. Let x be a description of a set S. in some natural encoding.

An exact counting scheme on input x outputs IS1,f with probability . Such a scheme is

polynomial if it runs in time polynomial in Jlx. Sometimes exact counting can be done in

polynomial time; however, the counting problem is often #P-complete and thus assumed to

be intractable. (For a discussion of the class #1' see Valiant [22].) For many #P-complete

problems good approximations are possible [12, 20, 21]. A randomized approximation scheme,

R, for a counting problem satisfies the following condition for all C, 6 > 0:

Pr IS. I < R(x,e, _ ISc,(1 + _ 1>

Pr E (1) -) I 8
where R(x, c, b) is R's estimate on input x, E, and 6. Such a scheme is fully polynomial if it

runs in time polynomial in lxi, ., and Ig 4. For a further discussion see Sinclair [20].

We now review work on counting the number of linear extensions of a total order. That

is, given a partial order on a set of n elements, the goal is to compute the number of total

orders that are linear extensions of the given partial order. We discuss the relationship

between this problem and that of computing the volume of a convex polyhedron. (For more

details on this subject, see Section 2.4 of Lovisz [17].) Given a convex set S and an element

a of Rn a weak separation oracle

1. Asserts that a E S, or

2. Asserts that a S and supplies a reason why. In particular for closed convex sets in

Wn, if a ' S then there exists a hyperplane separating a from S. So if a S. the oracle

responds with such a separating hyperplane as the reason why a S.

We now discuss how to reduce the problem of counting the number of extensions of a partial

order on n elements to that of computing the volume of a convex n-dimensional polyhedron

given by a separation oracle. The polyhedron built in the reduction will be a subset of

the unit hypercube in Rn where the polyhedron is determined by the intersection of the

halfspaces given by the inequalities of the partial order. (See Figure 9 for an example with

n = 3.) For a total order the polyhedron is a simplex such that for any pair of total orders

the simplices only intersect in a face (zero volume). Let T, be the set of all n! total orders

on n elements. Then

unit hypercube in Rn = U polyhedron defined by t. (11)
tET

34



(0.011)--.-.-.....

(0.11.0)

(00.0) (1,0,0)

Figure 9: The polyhedron formed by the total order z > y > x.

Let P be a partial order on a set of n elements. From Equation 11 and the observation that

the volumes of the polyhedra formed by each total order is equal, it follows that the volume

of the polyhedron defined by any total order is I/n!. Thus it follows that for any partial

order Porder P number of extensions of P
nn volume of polyhedron defined by P. (12)

Rewriting equation (12), we obtain that

number of extensions of P = n! . (volume of poiyhedrun defined by P). (13)

Finally, we note that the weak separation oracle is easy to implement for any partial

order. Given inputs a and S, it just checks each inequality of the partial order to see see

if a is in the convex polyhedron S. If a does not satisfy some inequality then reply that

a V S and return that inequality as the separating hyperplane. Otherwise, if a satisfies all

inequalities, reply that a E S.

Dyer, Frieze and Kannan [7] give a fully-polynomial randomized approximation scheme

(fpras) to approximate the volume of a polyhedron given a separation oracle. From Equa-

tion 13 we see that this fpras for estimating the volume of a polyhedron can be easily applied

to estinate the nimiber of extensions of a partial order. Furthermore, Dyer and Frieze [8]
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prove that it is #P-hard to exactly compute the volume a polyhedron given either by a list

of its facets or its vertices.

Independently, Matthews [181 has described an algorithm to generate a random linear

extension of a partial order. Consider the convex polyhedron K defined by the partial

order. Matthew's main result is a technique to sample nearly uniformly from K. Given

such a procedure to sample uniformly from K, one can sample uniformly from the set of

extensions of a partial order by choosing a random point in K and then selecting the total

order corresponding to the ordering of the coordinates of the selected point. A procedure to

generate a random linear extension of a partial order can be used repeatedly to approximate

the number of linear extensions of a partial order [18].

4.2 Application to Learning

In this section we show how to use a fpras to implement a randomized version of the ap-

proximate halving algorithm, and apply this result for the problem of learning a total order

on a set of n elements.

Under the teacher-selected query sequence we obtain an n- I mistake bound. The teacher

can uniquely specify the target total order by giving the n - 1 instances that correspond to

consecutive elements in the target total order. Since n - 1 instances are needed to uniquely

specify a total order, we get a matching lower bound. Winkler [25] has shown that under the

learner-selected query sequence, one can also obtain an n - 1 mistake bound. To achieve this

bound the learner uses an insertion sort, as described by Cormen, Leiserson, and Rivest [6],

where for each new element the learner guesses it is smaller than each of the ordered elements

(starting with the largest) until a mistake is made. When a mistake occurs this new element

is properly positioned in the chain. Thus at most n - 1 mistakes will be made by the learner.

We now argue that learner can be forced to make n - 1 mistakes. The adversary that

gives feedback using the following simple strategy: the first time an object is involved in a

comparison reply that learner's prediction is wrong. In doing so, one creates a set of chains

where a chain is a total order on a subset of the elements. If c chains are created by this

process then the learner has made n - c mistakes. Since all these chains must be combined

to get a total order, the adversary can force c - I additional mistakes by always replying

that a mistake occurs the first time when elements from two different chains are compared.

(It is not hard to see that the above steps can be interleaved.) Thus the adversary can force
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n - 1 mistakes.

Next we consider the case that an adversary selects the query sequence. We first prove

an f2(n Ig n) lower bound on the number of mnistakes made by any prediction algorithm. We

use the following result of Kahn and Saks [13]. Given any partial order P that is not a total

order there exists an incomparable pair of elements xi,xj such that

3 < number of extensions of P with xi < xj < 8

11 - number of extensions of P 11*

So the adversary can always pick a pair of elements so that regardless of the learner's pre-

diction, the adversary can report that a mistake was made while only eliminating a constant

fraction of the remaining total orders.

We now present a polynomial prediction algorithm making n lg n + (lg e) lg n mistakes

with very high probability. We first show how to use an exact counting algorithm R, for

counting the number of concepts in C,, consistent with a given set of examples, to implement

the halving algorithm.

Lemma 6 Given a polynomial algorithm R to exactly count the number of concepts in Cn

consistent with a given set E of examples, one can construct an efficient implementation of

the halving algorithm for C.

Proof: We show how to use R to efficiently make the predictions required by the halving

algorithm. To make a prediction for an instance x in X,, the following procedure is used:

Construct E- from E by appending x as a negative example to E. Use the counting algorithm

R to count the number of concepts C- E V that are consistent with E-. Next construct E+

from E by appending x as a positive example to E. As before, use R to count the number

of concepts C + E V that are consistent with E + . Finally if C- > C+ then predict that x is

a negative example, otherwise predict that x is a positive example.

Clearly a prediction is made in polynomial time, since it just requires calling R twice.

We claim that it predicts according to the majority of concepts in V. Note that C- is the

number of concepts in V for which x is a negative instance. Likewise, C+ is the number

of concepts in V for which x is a positive instance. Thus it immediately follows that the

prediction agrees with the majority of concepts in V. a

We modify this basic technique to use a fpras instead of the exact counting algorithm

to obtain an efficient implementation of a randomized version of the approximate halving

algorithm.
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Theorem 12 Let R be a fpras for counting the number of concepts in C, consistent with

a givcn set E of examples. If IXnI is polynomial in n, one can produce a prediction al-

gorithm that for any 6 > 0 runs in time polynomial in n and in Ig I and makes at most

1g ICnI (1 + !&) mistakes with probability at least 1 - 6.

Proof: The prediction algorithm implements the procedure described in Lemma 6 with the

exact counting algorithm replaced by the fpras R(n, 1, 6 ). Consider the prediction for ann, 21Xn) osdrte rdcinfra

instance X E Xn. Let V be the set of concepts that are consistent with all previous instances.

Let r+ (respectively r-) be the number of concepts in V for which x is a positive (negative)

instance. Let i+ (respectively i-) be the estimate output by R for r+ (r-). Since R is a

fpras, with probability at least 1 6
Ixo

r- r+
+ -(l+e)r and -< _<(+)r +.1+ - l+e-

Without loss of generality, assume that the algorithm predicts that x is a neg - Live instance,

and thus - > f+. Combining the above inequalities and the observation that r- +r + = IVI,

we obtain that r- >

We define an appropriate prediction to be a prediction that agrees with at least

of the concepts in V. To analyze the mistake bound for this algorithm, suppose that each

prediction is appropriate. For a single prediction to be appropriate, both calls to the fpras R

must output a count that is within a factor of 1 + c of the true count. So any given prediction

is appropriate with probability at least 1 - '", and thus the probability that all predictions

are appropriate is at least

i- i(4X-I) = 16

Clearly if all predictions are appropriate then the above procedure is in fact an implemen-

tation of the approximate halving algorithm with = I and thus by Theorem 11 at
most log(,-,)-, IC,,I mistakes are made. Substituting ' with its value of -,. and simplifying

the expression we obtain that with probability at least 1 - 6,

# mistakes< lg IG 1 lgJCnj (14)-l g ).14- lg lg(1 +,,++

Since 2 > I -

,,2+2n+1 -

11
<g(I+ n2 Ig(I + I
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1

I +lg (I-

=- (I--)

1 + Ig (I - 1

Applying the inequalities Ig (1 - > z,!_, and 1 + ig (1 - -<) _< 1 - 15-5 we get that

1±1g(1- ) - 1-_

- ig e
n - n - nIge

> - ge

n

Finally, applying these inequalities to Equation 14 yields that

#mistakes< lg jCnj < lg 1C, I1 + Le
-- nT I,2 -n 1

Note that we could modify the above proof by not requiring that all predictions be

appropriate. In particular if we allow 7 predictions to not be appropriate then we get a

mistake bound of lg ICn (1 + 1LE) + 7.

We now apply this result to obtain the main result of this section. Namely, we describe

a randomized polynomial prediction algorithm for learning a total order in the case that the

adversary selects the query sequence.

Theorem 13 There exists a prediction algorithm A for learning total orders such that on

input 6 (for all 6 > 0), and for any query sequence provided by the adversary, A runs in

time polynomial in n and lg and makes at most n lg n + (lg e) ig n mistakes with probability

at least 1 - b.

Proof Sketch: We apply the results of Theorem 12 using the fpras for counting the number

of extensions of a partial order given independently by Dyer, Frieze and Kannan [7], and by

Matthews [181. We know that with probability at least 1 - 6, the number of mistakes is at

most Ig jC,,I (I + 1'.). Since ICI = n! the desired result is obtained.

We note that the probability that A makes more than n Ig n + (Ig e) Ig n mistakes does

not depend on the query sequence selected by the adversary. The probability is taken over

the coin flips of the randomized approximation scheme.
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Thus, as in learning a k-binary-relation using a row-filter algorithm, we see that a learner

can do asymptotically better with self-directed learning versus adversary-directed learning.

However, while the self-directed learning algorithm is deterministic, the adversary-directed

algorithm is randomized. To accommodate such randomized prediction algorithms we pro-

vide the learner with an input 6 ano allow the algorithm to exceed the "worst-case" ristake

bound with a probability 6.

4.3 Majority Algorithms vs Counting Algorithms

In this section we discuss the relationship between counting schemes and the halving algo-

rithm. Let W be a set of elements for which some subset S of the elements are distinguished.

We use the function g that maps an element of W to {0, 1} to represent which of the elements

of W are distinguished. Specifically, for w E W, g(w) = 1 if and only if w is a distinguished

element. Let E* be an alphabet used to describe some subset of W. Let f be a function

from E* - 2
W that maps a E E* to the subset of W that it describes. We denote f(a) by

V,. Let t, = 1V01, and let d, be the number of distinguished elements in V0,. Formally, we

have d, = I{w E V, : g(w) = I1}. Finally, u, = V - d. That is, u, is the number of

undistinguished elements in V,. So d, + u, = t,.

A majority algorithm takes as input a and outputs a bit that is 1 if d, > u,, and 0 if

d, < u,. That is,

MAAJORITY() I i >u_
0 if d, <5 u,

On the other hand, a counting algorithm must output d,. In Lemma 6 we used a counting

algorithm to implement a majority algorithm. (There V, = C,' and an element of V, is

distinguished if and only if it is consistent with the given set of examples.) In this section

we discuss using a majority algorithm to implement a counting algorithm. The results of

this section are preliminary. Although we describe two techniques to convert a majority

algorithm to a counting algorithm, we do not have applications for these techniques that

yield any previously unknown results. We apply the first technique to an example problem;

however, it is trivial to construct a counting algorithm for this problem.
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U0  undistinguished undistinguished
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Remove rta/2]
distinguished elements

Figure 10: An illustration of the CONSTRAIN oracle when the majority of the elements in

V,, are distinguished.

4.3.1 First Approach

In this section we describe our first approach for using a majority algorithm to implement a

counting algorithm. We then show that our algorithm can be used to convert an algorithm

that outputs if a majority of k-CNF formulae classify a given instance as positive to one that

computes the number of k-CNF formulae that classify the given instance as positive.

We now describe our first approach. Here we recursively apply MAJORITY, at each step

reducing the larger of d, and u, by a factor of at least two. To use this approach, in addition

to the MAJORITY oracle, a CONSTRAIN oracle must be provided. The specification for the

CONSTRAIN oracle is as follows:

f new-object(d, - [tG/21,uo) if d, > u, (i.e. MAAJORITY(a) = 1)
CONSTRAIN~) = 1new-object(do,u, - [t,/21) if d, < u, (i.e. MAAJORITY(a) = 0)

where new-object(d, u) creates a word a E E* such that d = d and u, = u. So the oracle

CONSTRAIN just reduces the larger of d and u, by a factor of [t/21. The result of the

CONSTRAIN oracle is illustrated in Figure 10.

Theorem 14 One can construct, from a MAJORITY and CONSTRAIN oracle, a counting

algorithm that on input a uses at most lg(t,) calls to both oracles.
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Proof: We construct recursive counting procedure that takes input a, and uses CONSTRAIN

to reduce the larger of do and u,. The initial call should be Exact-Countl(a).

Exact-Countl(a)
1 if to = 0
2 then return 0
3 else return [t,/2]MAAJORITY(a) + Exact-Countl(ONSTRAIN(o), [t,/2J)

We first argue that this procedure is correct. Each time CONSTRAIN is called, we know

that do is reduced by exactly [Lt/21MAAJORITY(O"). So the total decrease in do from its

original value is accumulated in line 3 of the procedure. Finally, when to = 0 then clearly

do = 0, thus the base case is correct.

Since at each step to is reduced to t,/2j, at most lg(t,) recursive calls are made. Fur-

thermore, MAJORITY and CONSTRAIN are called only once for each recursive call. N

In terms of our original goal of converting a majority algorithm into a counting algorithm

we have the following corollary of Theorem 14.

Corollary 3 Let M be a majority algorithm for W using E*. Let TM(a) be the running

time of M on input a. Furthermore, suppose that CONSTRAIN can be implemented in time

Tc(o) on input a. Then there exists an exact counting algorithm that runs in time at most

(TM (a) + Tc(a))lgto.

We now apply this conversion to the following problem. Given a boolean vector x =

{0, 1}n, compute the number of k-CNF formula over n variables for which x is a positive

example. As Angluin notes [2], Valiant's algorithm for PAC-learning k-CNF implements the

halving algorithm. That is, given an instance x, it replies that x is a positive instance if

and only if at least half of the remaining k-CNF formulas classify x as a positive example.

Furthermore, each prediction is made in polynomial time. Therefore, for the given counting

problem, we have the needed majority algorithm. We now apply Corollary 3 to k-CNF to

obtain the following result.

Lemma 7 There exists a polynomial time algorithm to exactly count the number of k-CNF

formulas for which some x E X,, is a positive instance.

Proof: Let a be select from {0, 1}' where the interpretation is that a gives the assignments

to the n variables. So V, is computed by evaluating the target formula on the assignment
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given by a and including those that evaluate to 1. Thus Valiant's [231 algorithm for learning

k-CNF can serve as the majority algorithm. We now prove that the CONSTRAIN oracle

can also be implemented in polynomial time. As Angluin [2] notes, if Valiant's algorithm

predicts 0, then there exists some clause r in the learner's hypothesis that evaluates to 0.

So by removing r the requirements of CONSTRAIN are satisfied. 0

We note that this result is easily obtained without using Corollary 3. By studying the

recursive structure of the counting algorithm, we obtain the following counting algorithm for

k-CNF. Let T be the number of possible clauses of size k or less that are true for instance

x. Since the target formula can contain any subset of these clauses (but none of the clauses

that ate negative for x), the number of k-CNF formulas that predict that x is a positive

instance is 2T

4.3.2 Second Approach

In this section we describe our second approach to using a majority algorithm to implement

a counting algorithm. To motivate this approach, we consider how the first approach might

fail. The algorithm Exact-Countl can be used only if one can remove elements of V, in a

controlled manner. However, it may be the case that one cannot remove elements from V, as

desired, but can create some a' such that V,, D V6, and furthermore, all elements of V, - V,

are distinguished (or undistinguished). Our second approach is based on these ideas; instead

of adjusting the size of d, and u, by reducing their sizes, we achieve the same effect by

appropriately increasing the size of the smaller one.

To use this approach, in addition to the MAJORITY oracle, a EXPAND oracle must be

provided instead of the CONSTRAIN oracle. The specification of the EXPAND oracle is as

follows:

EXPAND(Ui) ={new-object(d,, u, + i) if d, >_ u,

new-object(d, + i, u,) if d_ < u,

So the oracle EXPAND just adds i elements to the smaller of d, and u,. The result of the

EXPAND oracle is illustrated in Figure 11.

We now describe the details of the second approach to convert a majority algorithm to

a counting algorithm.

Theorem 15 One can construct, from a MAJORITY and an EXPAND oracle, a counting

algorithm that on input oa uses at most lg(t,) calls to both oracles.
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"xD (a .i)

Add i
udisdnghished

UV undistinguished

d distiguishd disinguished

Figure 11: An illustration of the EXPAND oracle for the case that a majority of V, is

distinguished.

Proof: As in Theorem 14, the basic idea is to use the MAJORITY oracle to compute d,. We

do this by increasing the smaller of d and uo so that they are essentially equally. As before,

we use a binary search technique to efficiently perform this task, where at each step we use

a call to MAJORITY to determine in which direction further adjustments should be made.

The details are as follows.

Exact-Count2(o, /3, i)
1 ifi=0
2 then if MAAJORITY(OT) = 1
3 then return (t, + /)/2
4 else return (t, - #)/2
5 else if MAAJORITY(EXPAND(O,/3)) = MAAJORITY(O)

6 then Exact-Count2(o', / + [i/2], [i/2j)
7 else Exact-Count2(a, / - ri/2], [i/2J)

The initial call should be Exact-Count 2 (a, 0, t,). Note that /3 is the current estimate of the

number of elements that need to be added to the small side to make both sides equal, and i

is the size of the next adjustment to be made to /3.

We first argue that the procedure is correct. Let #I, i1 denote the input values of #3 and i
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to the lth call of Exact-Count. Let t = EXPAND(Or, 3i). Finally, we use dt (respectively ul)

to denote d, (respectively u,). Without loss of generality, assume that d, > u,. So for all
l,

Sdt= do= d,

" ul = uo + pc = u, + fi, and

* it = it-1/2J.

We claim that when the input i = 0 in Exact-Count2, d, = ul. We prove this using the

following lemma.

Lemma 8 For all 1, Ijdo - u. I < it.

Proof: We use an inductive proof on 1. Clearly, the base case, Id, - u, < t,, holds.

We now prove the inductive step. Assume inductively that Id - utl = d. - uo - #ig1 < it.

Our goal is to show that

1d4 - u. - #1+11 _< ii+, = li/2J.

We separately consider when d, > ul, d, < ut, and d, = ut.

" Case 1: d, > ul. In this case, /3I+ = /3 + [ig/2]. So we must show that

-[it/2J _< d - u,, - Pit - rit/21 _ [ig/2J.

That is, we must show that:

rit/21 - [i/2J :5 4 - uo - 3 < Lit/2J + rii/21 = it.

The inequality d, - u, - i _ it follows immediately from the inductive hypothesis.

For the other inequality note that rit/21 - Lii/2J < 1. Furthermore, since dl > ul,

d. - - #It = d, - ut > 1.

" Case 2: di < ut. In this case,/3t+i =Pt - ii/2]. So we must show that

-Lit/2J _ , - u, + f1 - [i,/2] <_ Li,/2j.

The proof for these inequalities is similar to that of Case 1.
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* Case 3: di = ul. For this case we first use an inductive proof to show that di + u= i=

(mod 2). The base case follows from the fact that 20 = do + u0 . For the inductive

step, observe that it - it+, = I(d, + ul) - (d1+1 + ul+i)I. Since di = ul, it must be that

it divisible by two, and thus [ii/2J = [it/2]. The inductive hypothesis immediately

follows from here.

This completes the proof of the lemma.

Since the recursion continues until it = 0 it follows from Lemma 8 that when i = 0

in Exact-Count2, dl = ul. Thus we know that for P3 the final value of &3, we have that

do = u, + P. Applying the equality that d, + u, = t, and solving for d,, we get that

d, = (t, + #)/2. (Since d, = ut, it follows that t, + / is even.) The case where d, < u_ is

handled similarly. Thus we have shown that the output from Exact-Count2 is correct.

Since at each step the increment size i is reduced to [i/2J, at most lg(t,) recursive calls

are made. Furthermore each oracle is called at most once during each recursive call. M

In terms of our original goal of converting a majority algorithm into a counting algorithm

we have the following corollary of Theorem 15.

Corollary 4 Let M be a majority algorithm for W under E*. Let TM be the running time

of M on input a. Furthermore, suppose that EXPAND can be implemented in time Tc on

input of size at most t,. Then there exists an exact counting algorithm that runs in time at

most (TM + Tc)lg to.

5 Conclusions and Open Problems

We have studied the the problem of learning a binary relation between two sets of objects and

between a set and itself under an extension of the on-line learning model. We have presented

general techniques to help develop efficient versions of the halving algorithm. In particular,

we have shown how a fpras can be used to efficiently implement a randomized version of the

approximate halving algorithm. We have also extended the mistake bound model by adding

the notion of an instance selector and generalizing it to accommodate randomized learning

algorithms. The specific results are summarized in Table 1. In this table all lower bounds

are information-theoretic bounds and all upper bounds are for polynomial-time learning

algorithms. Also, unless otherwise stated, the results listed are for deterministic learning

algorithms.
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Concept Lower Upper

Class Director Bound Bound Notes

Learner +(n- !)Ilgk- 11 km+ (n - k)ngkl

Teacher km + (n - k(k - 1) km+( - k)(k - 1)

Binary Relation Adversary km + (n - k)Llg kJ O(km+nV'Umg)*

(k row types) Adversary 2m + n - 2 2m + n - 2 k = 2

Adversary 0(km+(n-k)lgk+min(nV",m'/V") km + nV/"k - I)- row-filter algorithm

Uniform Dist. A m + tn - k)Llgk - IJ O(km + nkVTi) avg. case, row-filter alg.

Teacher n - I n- I

Total Order Learner n - 1 n-1 t

Adversary fl(n lg n) n lg n + (Ig e) Ig n randomized algorithm

Table 1: Summary of our results.

From observing Table 1 one can see that several of the above bounds are tight and several

others are asymptotically tight. However, for the problem of learning a k-binary-relation

there is a gap in the bound for the random and adversary (except k < 2) directors. Note

that the bounds for row-filter algorithms are asymptotically tight for k constant. Clearly, if

we want asymptotically tight bounds that include a dependence on k we must incorporate k

into the projective geometry lower bound. (Currently, the relation created by the adversary

has only two row types.)

For the problem of learning a total order, all the above bounds are tight or asymptotically

tight. Although the fpras for approximating the number of extensions of a partial order is a

polynomial-time algorithm, the exponent on n is somewhat large and the algorithm is quite

complicated. Thus an interesting problem is to find a "practical" prediction algorithm for

the problem of learning a total order. Another interesting direction of research is to explore

other ways of modeling the structure in a binary relation. Finally, we hope to find other

applications of fully polynomial approximation schemes to learning theory.

*Due to Manfred Warmuth.
tDue to Peter Winkler.
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